
COMPUTER 62

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

approach can achieve two-orders-of magnitude improve-
ment in computational efficiency for climate simulation
relative to a conventional symmetric multiprocessor (SMP)
approach.

The challenge of moving high-performance computing
architecture toward exaflops has staggering economic
and political ramifications. The computational power re-
quired for extreme-scale modeling accurate enough to
inform critical policy decisions requires a new breed of
extreme-scale computers. The “A Page from Embedded
Computing” sidebar describes the architectural philosophy
behind Green Flash.

To test our design philosophy, we chose a truly ex-
ascale problem: kilometer-scale models of the global
atmosphere system requiring simulations 1,000 times
faster than real time. The kilometer-scale model decom-
poses Earth’s atmosphere into 20 billion individual cells,
demanding a machine with unprecedented performance.

Applying energy-efficient, embedded processors, al-
though a crucial first step, is not in and of itself sufficient
to meet this challenge. The computing industry has ar-
rived at a rare inflection point: Fundamental principles
of computer architecture are open to question, and new
ideas are being explored. Green Flash not only offers a
glimpse of how design processes that have been success-
ful in the embedded space can be applied to scientific

T
he computational power required to accurately
model extreme problem spaces, such as climate
change, requires more than a business-as-usual
approach. Building ever-larger clusters of com-
mercial off-the-shelf (COTS) hardware will be

increasingly constrained by power and cooling—with
power consumption projected to be hundreds of mega-
watts for exascale-class problems according to recent
DARPA and DOE reports. It makes more sense therefore
to leverage the considerable innovation of the low-power
architectures developed for embedded computing mar-
kets and design a machine capable of the exaflops
performance (1 billion-billion floating-point operations
per second) required for this and similarly demanding
scientific applications.

To that end, we have developed Green Flash, an appli-
cation-driven design that combines a many-core processor
with novel alternatives to cache coherence and autotun-
ing to improve the kernels’ computational efficiency. This

A many-core processor design for high-per-
formance systems draws from embedded
computing’s low-power architectures and
design processes, providing a radical alter-
native to cluster solutions.

David Donofrio, Leonid Oliker, John Shalf, and Michael F. Wehner, Lawrence Berkeley
National Laboratory

Chris Rowen, Tensilica

Jens Krueger, Fraunhofer Institute, Germany

Shoaib Kamil and Marghoob Mohiyuddin, University of California, Berkeley

ENERGY-EFFICIENT
COMPUTING FOR
EXTREME-SCALE
SCIENCE

63NOVEMBER 2009

to develop models at the limit of cumulus parameteriza-
tion validity (approximately 25 km), but the necessary
century-scale integrations are just barely feasible on the
largest current computing platforms. Although this in-
crease in horizontal fidelity should rectify many issues,
the fundamental limitations of cumulus parameterization
are likely to remain.

For this reason, it makes more sense to simulate cloud
processes directly rather than model them statistically. At
a horizontal grid spacing of approximately 1 km, a model
could resolve cloud systems individually, providing a
direct numerical simulation. However, because numeri-
cal stability requirements impose time-step limitations, the
computational burden of fluid dynamics algorithms scales
nonlinearly with the number of grid points. Consequently,
the resources to carry out century-scale simulations of
Earth’s climate would overwhelm the capability of any
traditional machine.

Resource requirements
In previous work,2 we estimated the resources needed

for a resolution of approximately 1 km. To fine-tune these
estimates, we have since partnered with David Randall’s
group at Colorado State University (CSU) that is using a
mesh representation of the globe with an icosahedron as
the starting point. By successively bisecting the sides of
the triangles making up this object, the group was able
to generate a remarkably uniform mesh on the sphere.
However, this is not the only way to discretize the globe at
this resolution; a variety of independent resolving models
are necessary to make credible projections about climate

computing, but also addresses some of the most daunting
problems of managing the exponential growth of on-chip-
parallelism across the entire information technology (IT)
industry.

MODELING EARTH’S CLIMATE SYSTEM
Current-generation climate models are comprehensive

representations of the systems that determine Earth’s cli-
mate. Models prepared for the IPCC Fourth Assessment
Report: Climate Change 20071 coupled submodels of the
atmosphere, ocean, and sea ice to provide simulations of
the past, present, and future climate. Models already being
prepared for the next report will represent the major re-
maining climate system components—the terrestrial and
oceanic biosphere, the Greenland and Antarctic ice sheets,
and certain aspects of atmospheric chemistry.

Each subsystem model has its own strengths and
weaknesses and introduces a particular amount of un-
certainty into climate projections. Current computational
resources limit the resolution of these submodels, thereby
contributing to the uncertainty. Resolution constraints on
atmospheric process models, for example, do not allow
clouds to be resolved, which means that model develop-
ers must rely on subgrid-scale parameterizations that are
based on statistical methods. Simulations with these con-
straints produce cloud distributions that do not correlate
well with observations.

Such disagreements can be traced to cumulus convec-
tion parameterization. Current global atmospheric models
have resolutions of approximately 200 km—many times
larger than individual clouds. A few groups are attempting

P eter Ungaro, CEO of Cray Computing, recently remarked that
“Our current technologies can get us to the 10-20 petaflops

range. But then to start to think about 100 [petaflops], we really need
a major shift in technology.”1

The high-performance computing community has long sub-
scribed to architectural specialization as the best way to boost
efficiency, but design and verification costs and lead times have
made the cost of creating full-custom designs impractical. Thus, to
think about exaflops other than in the context of science fiction
means abandoning the idea of building ever-larger clusters and
turning to another set of proven design strategies that don’t come
at a prohibitive cost.

In our search for a radical alternative, we turned to the
embedded-processor market, which successfully addresses the
custom and cost issues. The industry relies on sophisticated tool
chains that enable the rapid and cost-effective turnaround of
power-efficient semicustom design implementations appropriate
to each application.

Our design, Green Flash, leverages the same tool chains to
design power-efficient exascale systems, tailoring embedded
chips to target scientific applications. Rather than ask, What kind
of scientific applications can run on our high-performance com-
puting cluster? after it arrives, we have turned the question around

to ask, What kind of system should be built to meet the needs of
the most important science problems? This approach lets us real-
ize the most substantial gains in energy efficiency because we
essentially peel back the complexity of a high-frequency micro-
processor design point to reduce waste—wasted opcodes, wasted
bandwidth, waste caused by orienting architectures toward serial
performance. We also change the notion of commodity from that
of component-level integration of clusters to integration of com-
modity circuit designs within a chip for a system-on-chip.

By using hardware-software cotuning, our design enables
rapid hardware design and establishes a feedback path from
application programmer to hardware designer. By combining an
autotuning environment for software optimization with an emu-
lation platform based on an FPGA, we can simultaneously develop
software optimizations and a semispecialized processor design.
Essentially, we have not only built on proven ideas, but we have
taken them in a new direction.

Reference
 1. G. Huang, “Cray’s Comeback: CEO Peter Ungaro on Clouds, Exa-

flops, and the Future of Supercomputing,” 30 July 2009; www.
xconomy.com/seattle/2009/07/30/crays-comeback-ceo-peter-
ungaro-on-clouds-exaflops-and-the-future-of-supercomputing.

A PAGE FROM EMBEDDED COMPUTING

COVER FE ATURE

COMPUTER 64

the peak flops rate requirement down considerably. About
25 Mbytes of memory would also be required per subdo-
main as would about 7,500 nearest-neighbor messages
per second with a size of 8 to 10 Kbytes each. This last
requirement translates to a bandwidth of about 78 Mbytes
per second between nearest-neighbor processors.

Designing 128 cores onto a single chip would result in
163,840 individual sockets—numbers that were not im-
plausible. We were thus encouraged to take our strawman
decomposition to the design stage.

DESIGN PROCESS
Because power constraints have long directed the de-

velopment of embedded architectures, we began with an
embedded core and some of the sophisticated tool chains
developed to minimize time from architectural specifica-
tions to the application-specific IC. We then looked at how
we could maximize efficiency by tuning the hardware
and software to optimize performance as well as how we
could provide rapid design prototypes and cope with fault
resilience.

Leveraging an embedded tool chain
The sophisticated tool chains for developing the system-

on-chip application-specific ICs popular in the embedded
computing market give designers the flexibility to combine
verified functional units in myriad ways to rapidly produce
semicustom designs. To test these ideas, we adopted the
tool chain from Tensilica,3 an embedded-design firm. The
chain starts with a base architecture, to which a designer
can add floating-point support to a processor or perhaps
choose a larger cache or local store. Adding features to the
processor core (or removing them) is as simple as clicking
a checkbox or selecting from a dropdown menu.

The tool then selects the unit from its library and in-
tegrates it into the design—which substantially reduces
the writing and rewriting of the full custom logic typically
required when changing a processor’s architecture. To help
maintain backward and general-purpose compatibility,
the processor’s instruction set architecture is expandable
but must be functional enough to allow general-purpose
code execution. The tools also allow designers to flexibly
define application-specific extensions to the base instruc-
tion set architecture. Of course, the tools have their limits
(a designer can’t have hundreds of read ports from a single
memory, for example), but their flexibility vastly outweighs
any inherent restrictions.

Much like current high-performance computing
designs, our approach continues to use off-the-shelf com-
ponents except at a finer grain. Rather than using entire
off-the-shelf processors at a socket-level granularity, we
can tailor individual functional units within a core and
their interconnections to create a semicustom system-on-
chip (SOC) design.

change. Consequently, we wanted to be sure that Green
Flash could run a class of global climate models, not just
a particular model.

We originally estimated 10 petaflops as the sustained
computational rate necessary to simulate Earth’s climate
1,000 times faster than it actually occurs. An updated esti-
mate of the requirements for the CSU model raised that to
as high as 70 petaflops—an example of the considerable
uncertainty in making these estimates. As the CSU model
matures, we expect to determine this rate even more accu-
rately. An exaflops-scale machine would provide multiple
realizations of individual simulations, a necessary tool in
addressing the climate system’s statistical complexities.
The exact peak flops rate required would depend greatly
on the machine’s potential efficiency.

A strawman decomposition
Without sufficient parallelism in the climate problem,

these enormous sustained computational rates are not
even imaginable. Fortunately, the CSU group has demon-
strated that the icosahedral formulation of cloud-system
resolving models at the kilometer scale can offer plenty
of opportunity to decompose the physical domain. Their
decomposition bisects the triangles composing the ico-
sahedron 12 successive times, producing a global mesh
with 167,772,162 vertices spaced 1 to 2 km apart. It is then
possible to apply a logically rectangular two-dimensional
domain-decomposition strategy horizontally to the ico-
sahedral grid. Choosing square segments of the mesh
containing 64 grid points each (8 × 8) results in 2,621,440
horizontal domains. The vertical dimension offers ad-
ditional parallelism. Assuming that we could decompose
128 layers into eight separate vertical domains, the total
number of physical subdomains could be 20,971,520.

Even given 20-million-way parallelism, we continued
to pursue the strawman decomposition, keeping in mind
the practical constraints on an SMP core’s performance.
With a single core assigned to each subdomain, individual
cores must be capable of a computational rate of about 3.5
gigaflops for the icosahedral code to achieve a simulation
1,000 times faster than real time. These rates are based on
the computational efficiency rates of current mainstream
rates. The efficiency gained through autotuning can bring

To help maintain backward and
general-purpose compatibility, the
processor’s instruction set architecture
is expandable but must be functional
enough to allow general-purpose code
execution.

65NOVEMBER 2009

ample, demonstrated the emulation of more than 1,000
cores using a stack of 16 BEE2 boards.7

Maximizing efficiency
Opting to follow the design philosophy that the best

way to reduce power consumption and increase ef-
ficiency is to reduce waste, we chose an architecture
with a very simple in-order core and no branch predic-
tion. Because the climate model’s demands for memory
and communication are high, both aspects drive Green
Flash’s core design. Reducing the computational burden
through autotuning also contributes to efficiency. Finally,
hardware-software cotuning tunes the hardware to the
autotuned software for additional efficiency gains.

Network topology. Our experience evaluating the STI
Cell processor4 shows that, for memory-intensive applica-
tions, cores with a local store use a higher percentage of
the available dynamic RAM (DRAM) bandwidth. On the
basis of these results, we decided to include a local store in
our processor architecture. As Figure 1 shows, the design
uses a torus network fabric with two on-chip networks.
Predictably, most of the communication among the cli-
mate model’s subdomains is nearest neighbor. We did

The ability to rapidly generate processor
cores that are tailored to scientific applications
makes these tools compelling, but the excessive
overhead in verifying hardware and creating a
usable software stack for each new processor ne-
gates any time saved in hardware development.
To address this drawback, the tools generate
optimizing compilers—test benches as well as
a functional simulator—in parallel with the de-
sign’s register transfer logic. Constructing the
processor with verified building blocks and auto-
matically generating test benches greatly reduce
the risk and time spent in formal verification.

Rapid design prototyping
Traditionally, the complexity of coding in

Verilog or VHDL versus C++ or Python and the in-
ability to emulate large designs have outweighed
the speed and accuracy advantages of using field-
programmable gate arrays (FPGAs). However, FPGA
use has become much more practical over the past
decade because, unlike commercial microproces-
sors, FPGAs are not experiencing a clock-rate and
power plateau. The lookup table count on FPGAs
continues to increase, enabling the emulation of
more complex designs. In addition, FPGA clock
rates have been growing steadily, closing the gap
between emulated and production clock rates.
Recent advances in FPGA I/O features have made
accessing large, dynamic memories much more
palatable.

To accelerate the creation of prototype system designs,
we are using the Research Accelerator for Multiple Proces-
sors (RAMP),6 an FPGA emulation platform that makes the
hardware configuration available for evaluation while the
actual hardware is still on the drawing board. RAMP is a
cooperative effort among six universities to build a new
standard emulation system for parallel processors.

Although the steady growth in FPGA lookup table count
has enabled the emulation of more complex designs, a
strawman architecture of 128 cores per socket requires
emulating more than the two or four cores that will fit on a
single FPGA. To address this limitation, we have employed
version 3 of the Berkeley Emulation Engine (BEE3), a board
populated with four Virtex-5 155 FPGAs, each with two
dedicated channels of double data rate memory, connected
in a ring with a crossover connection.

Using the BEE3, we effectively emulate eight networked
cores, each running at 33 MHz. To scale beyond eight
cores, the BEE3 includes 10-Gbit Ethernet connections,
allowing the boards to be linked and enabling the emula-
tion of an entire socket. There is significant precedent for
emulating massively multithreaded architectures across
multiple FPGAs. The Berkeley RAMP Blue project, for ex-

Xtensa

Xtensa

Local store

Xtensa

Xtensa

$

$

$

$

To global
network

To global
network

Arbiter

Arbiter

DRAM

DRAM

Figure 1. The on-chip network fabric for the Green Flash system-
on-chip. A concentrated torus network fabric yields the highest
performance and most power-efficient design for scientific codes.

COVER FE ATURE

COMPUTER 66

between cores, bringing the communication overhead
below 20 percent of the total execution time. We have
used Tensilica’s tools to create multiple designer-defined
ports with a simple first-in, first-out interface, and each
port can send and receive a word-sized data packet on
each clock. This ultra-low-overhead streaming interface
bypasses the cache to minimize latency and connects to
one of the on-chip torus networks. The narrow network
is for address exchange; the wider torus network is for
bulk data exchange using asynchronous direct memory
access (DMA) data transfers. The address space for each
processor’s local store is mapped into the global address
space, and the data exchange is done as a DMA from local
store to local store.

From a logical programming view, all processors are
directly connected to each other, but physically are con-
nected using a concentrated torus network to the chip’s
2D planar geometry. To further simplify programming,
a traditional cache hierarchy is also in place to allow the
slow porting of codes to the more efficient interproces-
sor network. To minimize power, we are investigating the
use of photonic interconnects for the intercore network,
which could prove to be an efficient way of transferring
long messages. The “Photonic Networks: A More Efficient

additional experiments with cycle-accurate models of an
on-chip packet-switched network to determine that a con-
centrated torus topology provides superior performance
and energy efficiency for codes in which a nearest-neighbor
communication pattern dominates.5 We are currently tar-
geting a core with a clock speed of 500 MHz, a 32-Kbyte
conventional error correction code (ECC)-protected cache
per core, and a 128-Kbyte local store. The availability of
a conventional cache will allow code to be incrementally
ported to use the local store. Each socket of 128 cores will
have a 50-Gbyte-per-second interface to DRAM.

The traditional cache-coherent memory consistency
schemes typical of most modern SMPs make fine-grained
synchronization among cores very difficult, and greatly
increase the amount of undesired interprocessor data
movement. For example, to achieve our target execution
rate on 20 million processors, we must compute on a local
mesh size that is 8 × 8 × 10 cells. We have observed that
the code would spend 90 percent of its time in commu-
nication if it were to run on a conventional cache-based
hardware, due to the overhead penalty of exchanging ex-
tremely small messages between cores.

In Green Flash, we have added specialized hardware to
each core to enable extremely low-overhead messaging

P ower efficiency requires reducing the power consumption of
all system components. With these highly efficient tiny

processing elements there is a danger that communication
bottlenecks—both in energy and time—will result in a less
efficient overall system. To mitigate this danger, long-term
research requires exploring interconnect architectures that will
both increase performance and reduce energy use.

One promising approach is to combine 3D CMOS integration
with research into silicon photonics to build hybrid electronic-
photonic interconnects on-chip.1,2 Designers place photonic
detectors and emitters along with specialized low-power pho-
tonic switching elements on a special interconnect layer and

interface them with processing elements using conventional
electronic routers. Figure A shows how the switching elements
work. Large-scale communications occur over photonic links,
which have several strong advantages over electronic networks.
Energy consumption for photonics is less dependent on signal-
ing rate and distance compared to electronics, and the photonic
switches are much simpler as they do not require buffers or
repeaters.

Preliminary research with messaging patterns arising from sci-
entific applications shows that such hybrid networks have the
potential to bring major gains in efficiency, due to their lower
power consumption combined with fast propagation speed. Early
research studies done in collaboration with the Lightwave
Research Laboratory at Columbia University, for example, show
that a hybrid electronic-photonic interconnect composed of ring
resonators can deliver 27x better energy efficiency than electrical
interconnects alone.3

References
 1. C. Batten et al., “Building Many-Core Processor-to-DRAM Net-

works with Monolithic CMOS Silicon Photonics,” IEEE Micro,
Special Issue: Micro’s Top Picks from Hot Interconnects 16,
vol. 29, no. 4, 2008, pp. 8-21.

 2. A. Shacham, K. Bergman, and L.P. Carloni, “Photonic Net-
works-on-Chip for Future Generations of Chip Multi-
processors,” IEEE Trans. Computers, vol. 57, no. 9, 2008, pp.
1246-1260.

 3. G. Hendry et al., “Analysis of Photonic Networks for a Chip
Multiprocessor Using Scientific Applications,” Proc. 2009 3rd
ACM/IEEE Int’l Symp. Networks-on-Chip (NOCs 09), IEEE CS
Press, 2009, pp. 104-113.

PHOTONIC NETWORKS: A MORE EFFICIENT NETWORK INTERCONNECT

(1) (2)

Figure A. Photonic switching elements. (1) Light is coupled
onto a perpendicular path; (2) messages propagate straight
through. The lack of distance and complex structures are
strong advantages over a purely electrical interconnect.

67NOVEMBER 2009

As a demonstration of our proposed cotuning methodol-
ogy, we used the Smart Memories multiprocessor (based
on Tensilica cores) as the target architecture and three
widely used kernels from scientific computing—dense
matrix-matrix multiplication, stencil codes, and sparse
matrix vector multiplication. As part of exploring the
hardware design space, we varied four hardware param-
eters: number of cores, whether caches are hardware- or
software-managed, cache size per core, and total memory
bandwidth available.

We used tools to estimate the area and power of each
hardware configuration that had the corresponding best
software configuration, which we obtained through au-
totuning. As Figure 4 shows, power and area efficiencies
improved dramatically for the three kernels.

One hindrance to practical cotuning is the large hard-
ware-software design space to be explored to tailor the
hardware design parameters to the target applications.
Conventional hardware design approaches use a software
simulation of the hardware to perform this exploration.
However, cotuning in Green Flash must explore the soft-
ware design space at each hardware design point, making
it impractical to cotune using software simulation.

Instead, we took advantage of the Tensilica tool chain’s
ability to create synthesizable register-transfer logic for
any processor and, by loading this design onto an FPGA,
we were able to emulate a potential processor design run-
ning 500 times faster than a functional simulator. With
this speedup, designers can benchmark true applications
rather than having to rely on representative code snippets or
statically defined benchmarks. More important, this speed
advantage does not come at the expense of accuracy; FPGA
emulation is arguably much more accurate than a software
simulation environment because it truly represents the
hardware design.

Network Interconnect” sidebar describes
the advantages of this approach.

Autotuning. Communication was
not our only challenge in the cli-
mate model computation. Meeting
the requirement of simulating at
1000× real time per core in a power-
efficient design is a daunting task, so
to optimize the code and reduce the
computational burden, we created an
autotuning framework that automati-
cally searches a range of optimizations
to improve the application kernels’
computational efficiency. The auto-
tuner f irst systematically applies
compiler optimizations and then uses
domain-specific knowledge of the
algorithm to take more aggressive
steps, such as loop reordering, to pro-
duce optimal, but functionally equivalent, code. In this
way, it maintains performance across a diverse set of
architectures.

Figure 2 shows the results for the climate model. We
ran the autotuning framework using the Tensilica archi-
tectural simulator, reducing the cache footprint and overall
instruction count and increasing the kernel’s computational
density. We first generated the original requirement of 3.5
gigaflops per core using a machine that ran with approxi-
mately 5 percent efficiency. Autotuners, combined with
hardware optimizations, will play a key role in dramatically
increasing the efficiency of Green Flash. Through these
combined optimizations, we expect Green Flash to realize
a two-orders-of-magnitude increase in efficiency.

Hardware-software codesign. Conventional approaches
to hardware design use benchmark codes to search for a
power-efficient architecture. However, modern compil-
ers fail to generate even close to optimal code for target
machines, which strongly implies that a benchmark-based
approach to hardware design does not exploit the full per-
formance potential of the architecture design points and
can lead to possibly suboptimal hardware solutions. The
success of autotuners proves the feasibility of generating
efficient code using domain knowledge. Therefore, we
created cotuning as a technique to tailor the hardware to
autotuned software to get better energy efficiency. Using
our autotuning technology, we can automate the explora-
tion for the optimal combination of tuned software and
hardware in a coordinated design cycle.

As Figure 3 shows, our cotuning approach incorporates
extensive software tuning into the hardware design pro-
cess. The autotuned software tailors the application to the
hardware design point under consideration by empirically
searching software implementations to find the best map-
ping of software to microarchitecture.

Loop after reorderingLoop before reordering

Floating point

Integer

Control

Bitwise

Other

Figure 2. Effect of optimization on a single loop in the climate model. In
addition to greatly reducing the instruction count, optimization reduced the
cache footprint of this loop by more than 100 times. With software tuning,
Green Flash can reduce a per-core computational requirement of 3.5 gigaflops
to a more feasible 0.5 gigaflops.

COVER FE ATURE

COMPUTER 68

aggregating conventional server chips into large-scale
systems.

Across silicon design processes with the same design
rules, hard failure rates are proportional to the number
of system sockets and typically stem from a mechanical
failure. Soft error rates are proportional to the chip surface
area—not how many cores are on a chip—and bit error
rates tend to increase with clock rate. The Green Flash
architecture is unremarkable in all these respects and
should not pose challenges beyond those that a conven-
tional approach faces.

To deal with hard errors, designers often add redun-
dant cores per chip to cover defects. An old trick in the
memory business, the strategy is apparent in designs
such as the 188-core Cisco Metro chip, and it is entirely
feasible for our design as well. Moreover, Green Flash’s
low power dissipation per chip (7 to 15W) will reduce
the mechanical and thermal stresses that often result
in a hard error.

To address soft errors, we have included all the basics
for reliability and error recovery in the memory subsys-
tem, including full ECC protection for all hierarchical
levels. Green Flash’s low target clock frequency provides
a lower signal-to-noise ratio for on-chip data transfers.
Finally, to enable faster rollback if an error does occur,
our design makes it possible to incorporate a nonvola-
tile RAM controller onto each SMP so that each node
can perform a local rollback as needed. This strategy

The hardware-software codesign process enables
scientific application developers to directly participate
in the design process for future supercomputers in an
unprecedented way. With this fast, accurate emulation
environment, designers can run and benchmark the actual
climate model as it is being developed and use cotuning to
quickly search a large design space.

We believe that these experiments outline a path for
bringing the concept of hardware-software codesign—al-
ready prevalent in embedded design practices—into the
realm of supercomputing system design.

SCALING UP
This article focuses primarily on hardware and software

design methodology. However, in considering any system
of this scale, a myriad of system software issues come to
the forefront, such as scalable operating systems, fault
resilience infrastructure, and the development of entirely
new programming models to make billion-way parallelism
more tractable.

Fault resilience
An important question arises when proposing a

20-million-processor computing system: How do you
deal with fault resilience? Although the problem is cer-
tainly not trivial, neither is it unusual. As long as the
total number of discrete chips is not dramatically dif-
ferent, any large-scale design faces the challenge of

.f95
.cu .f95

.h

Reference
implementation

.c
.c

Pa
rse

Code
generators

C with
pthreads

CUDA

Fortran

Strategy
engines

Parallel

Serial

GTX280

Victoria Falls

Conventional autotuning methodology

Novel cotuning methodology

Internal abstract
syntax tree

representation

Transformation and code generation
with high-level knowledge

Myriad of equivalent,
optimized implementations

(plus test harness)

Search
engines

in context
of speci�c
problem

Best performing
implementation

and con�guration
parameters

Generate
new hardware
con�guration

Generate
code

variant

Benchmark
code

variant

Acceptable
e�ciency?

Acceptable
software

performance?
Reference

hardware and
software

con�guration

Optimized
hardware and

software
con�gurationEstimate area

Estimate power

(a)

(b)

Figure 3. Cotuning in the Green Flash design. (a) Conventional autotuning uses source code generators and search heuristics to
empirically choose an efficient software implementation given a high-level representation of a kernel. (b) Hardware-software
cotuning extends conventional hardware design space exploration by using autotuning to tailor software to each hardware
design point.

69NOVEMBER 2009

vironment that supports portability, performance, and
correctness without exposing scientists to the details of
the computer architecture. We think this approach can
be scaled out to support a broad range of codes that have
such inherent explicit parallelism.

However, not all applications will be able to express
parallelism through simple divide-and-conquer problem
partitioning. We are only just beginning to explore new
asymmetric and asynchronous approaches to achieving
strong-scaling performance improvements from explicit
parallelism. Techniques that resemble class static dataflow

enables much faster rollback, relative to user-space
checkpointing.

The Blue Gene system at Lawrence Livermore National
Laboratory uses similar fault resilience strategies and con-
tains a comparable number of sockets to Green Flash, yet
its mean time between failures (MTBF) is 7 to 10 days8—
much longer than systems with far fewer processor cores.
Because we tailor our architecture to the application,
Green Flash can deliver more performance than a machine
with a comparable number of sockets, thus reducing its ex-
posure to both hard and soft errors. It proves that carefully
applying well-known fault-resilience techniques together
with a few novel mechanisms that extend fault resilience,
such as localized nonvolatile RAM checkpoints, can yield
an acceptable MTBF for extreme-scale implementations.

Programming model
Future hardware constraints and growth in explicit on-

chip parallelism will likely require a mass migration to new
algorithms and software architecture that is as broad and
disruptive as the migration from vector to parallel comput-
ing systems that occurred 15 years ago. Applications and
algorithms will need to rely increasingly on fine-grained
parallelism and strong scaling and support fault resilience.

History shows that the application-driven approach
we are using for Green Flash offers the most productive
strategy for evaluating and selecting among the myriad
choices for refactoring algorithms for full scientific appli-
cation codes as we move through this transitional phase.
We are exploring novel programming models together
with hardware support to express fine-grained parallel-
ism to achieve performance, productivity, and correctness
for leading-edge application codes in the face of massive
parallelism and increasingly hierarchical hardware. The
goal of this development thrust is to create a new software
model that can provide a stable platform for software de-
velopment for the next decade and beyond for all scales of
scientific computing.

We have developed direct hardware support for both
the message passing interface (MPI) and partitioned global
address space (PGAS) programming models to enable scal-
ing of these familiar single program, multiple data (SPMD)
programming styles to much larger-scale systems. The
modest hardware support enables relatively well-known
programming paradigms to utilize massive on-chip con-
currency and to use hierarchical parallelism to enable
use of larger messages for interchip communication. The
icosahedral formulation of the climate problem can expose
a massive degree of parallelism through domain decom-
position, which can use a 20-million processor computing
system. The autotuning framework is rapidly evolving into
a generalized code generator, which allows the program-
mer to express the solver kernels at a much higher level
of abstraction—enabling a productive programming en-

Power e�ciency (M�op/s/watt)(a)

(b)

(c)

Ar
ea

 e�
cie

nc
y (

M
�o

p/
s/m

m
2)

Ar
ea

 e�
cie

nc
y (

M
�o

p/
s/m

m
2)

Ar
ea

 e�
cie

nc
y (

M
�o

p/
s/m

m
2)

60

50

40

30

20

10

0 800700600500400300200100

Power e�ciency (M�op/s/watt)
0

5

160

140

120

100

80

60

40

20

10

15

20

25

30025020015010050

Power e�ciency (M�op/s/watt)
0 5,0004,0003,0002,0001,000

PE

PE

PE

AE

AE

AE

Tuned CC
Untuned CC
Local store

Figure 4. The advantages of cotuning for three kernel types
common in scientific applications. AE and PE points denote
configurations with highest area and power efficiencies.
Improvements varied from 2x to 50x.

COVER FE ATURE

COMPUTER 70

from the smallest handheld to the largest supercomputer.
The investment will thus be the center of a sustainable
software-hardware universe supported by applications
across the IT industry.

F
or the past decade, the current methodolo-
gies of message-passing interfaces and Fortran
have adequately served the development of
high-performance computing applications. But
parallelism is no longer an exotic problem. It is

an industry-wide challenge that affects everything from
cell phones to data centers. Future hardware constraints
and growth in explicit on-chip parallelism will require a
mass migration to new algorithms and software architec-
ture—a migration as broad and disruptive as that from
vector to parallel computing systems.

Green Flash represents a radical approach that breaks
through the slow pace of incremental change. It dem-
onstrates that application-driven computing design can
foster a sustainable hardware-software ecosystem with
broad-based support across the IT industry. In evolving
Green Flash, we explored practical advanced program-
ming models together with lightweight hardware support
mechanisms that allow programmers to use massive on-
chip concurrency.

Green Flash has provided insights into how designers
can evolve massively parallel chip architectures through a
feedback path that closely couples application, algorithm,
and hardware design. Application-driven design ensures
that hardware design is not driven by reactions to hard-
ware constraints—reactions that ignore programmability
and delivered application performance. Our exploration of
the climate model allowed us to investigate questions that
cut across all application areas and have ramifications for
the next generation of fully general-purpose architectures.
Ultimately, we envision an architecture that can exploit
reusable components from the mass embedded computing
market while improving programmability for a many-core
design. The future building blocks of a high-performance
computing system will serve the performance and pro-
grammability needs of the smallest high-performance,
energy-efficient embedded system all the way to extreme-
scale machines.

Acknowledgments
We thank Mark Horowitz and the rest of the Smart Memories
Team of Stanford University for early support and advice. We
thank the Berkeley Wireless Research Center for early and
ongoing assistance with the RAMP platform. We thank Dave
Randall’s modeling group in the Department of Atmospheric
Science at Colorado State University for early access to their
icosahedral model. Finally, we would like to acknowledge the
Berkeley ParLab and the View from Berkeley discussion that

methods are garnering renewed interest because of their
ability to flexibly schedule work and to accommodate state
migration to correct load imbalances and failures.

In the case of the climate code, we can use dataflow
techniques to concurrently schedule the physics computa-
tions with the dynamic core of the climate code, thereby
doubling our concurrency without moving to a finer
domain decomposition. This approach also benefits from
the unique interprocessor communication interfaces devel-
oped for Green Flash. Successful demonstration of the new
parallelization procedure for a range of leading extreme-
scale applications can then be utilized by other similar
codes, accelerating development efforts for the entire field.

What’s next?
Designs that follow our approach have the potential

to open a market demand for massively concurrent com-
ponents that can also be the building blocks for mid- and
extreme-scale computing systems. New programming
models must be part of a new software development eco-
system that spans all system scales so that the industry has
a viable migration path from development to large-scale
production computing systems. We have demonstrated the
value of FPGA-based hardware emulation platforms, such
as RAMP, in prototyping and running hardware prototypes
at near-real-time speeds before they are built. Such a capa-
bility will make it possible to test full-fledged application
code and advanced software development many years
ahead of the hardware platform construction.

Although machines such as Blue Gene or SciCortex have
demonstrated the advantages of using simple, low-power
embedded cores, our approach goes beyond these tra-
ditional designs by optimizing data movement through
explicit message queues and software controlled memo-
ries. Relative to models such as CUDA9 (Compute Unified
Device Architecture) and Streaming,10 our simple hardware
support for lightweight on-chip interprocessor synchro-
nization and communication provides a straightforward
approach to programming a massive array of proces-
sors. Rather than limit implementation to off-the-shelf
embedded ASIC tools, we also investigated more exotic
technologies, such as silicon photonic interconnects.

Cost is and will continue to be a critical driver in evolv-
ing new technologies. The scientific computing community
cannot sustain the end-to-end cost of developing and main-
taining technologies that apply only to the narrow market
of leading-edge high-performance computing systems.
Broad-based market support is a prerequisite to make such
an ecosystem both practical and sustainable. We believe
that our decision to draw from the embedded computing
industry will produce technology that reduces economic
and manufacturing barriers to constructing computing
systems useful to science. It will also ensure that selected
technologies have broad market impact for everything

71NOVEMBER 2009

Tech. He is a member of the IEEE Computer Society. Contact
him at jshalf@lbl.gov.

Michael F. Wehner is a member of the Scientific Computing
Group at the Lawrence Berkeley National Laboratory. His re-
search interests include the design of global climate models
and the analysis of their output. Wehner received a PhD
in nuclear engineering from the University of Wisconsin-
Madison. Contact him at mfwehner@lbl.gov.

Chris Rowen is the CTO and founder of Tensilica. His re-
search interests include computer architecture, parallel
programming models, and energy-efficient hardware ar-
chitecture. Rowen received a PhD in electrical engineering
from Stanford University. Contact him at rowen@tensilica.
com.

Jens Krueger is a research assistant at the Fraunhofer
Institute for Industrial Mathematics and a visiting
researcher at the Lawrence Berkeley National Laboratory
Future Technologies Group. His research interests include
high-performance and scientific computing focused on
future hardware architectures and code optimization. Con-
tact him at jtkrueger@lbl.gov.

Shoaib Kamil is a PhD student in the Department of Com-
puter Science at the University of California, Berkeley. His
research, conducted with the Future Technologies Group at
Lawrence Berkeley National Laboratory, is in autotuning,
power efficiency, and interconnect optimization. Contact
him at skamil@eecs.berkeley.edu.

Marghoob Mohiyuddin is a PhD student in the Department
of Electrical Engineering and Computer Science at the Uni-
versity of California, Berkeley, and a member of the Future
Technologies Group at Lawrence Berkeley National Labora-
tory. His research interests include computer architecture
and performance tuning for scientific computing. Contact
him at marghoob@eecs.berkeley.edu.

led us to take this direction for HPC architecture. All authors
from LBNL were supported by the Office of Advanced Scien-
tific Computing Research in the Department of Energy Office
of Science under contract number DE-AC02-05CH11231.

References
 1. Intergovernmental Panel on Climate Change (IPCC); www.

ipcc.ch/publications_and_data/publications_and_data_
reports.htm.

 2. M. Wehner, L. Oliker, and J. Shalf, “Towards Ultra-High
Resolution Models of Climate and Weather,” Int’l J. High
Performance Computing Applications, Apr. 2008, pp.
149-165.

 3. Tensilica Inc., “Hardware and Software Development
Tools;” www.tensilica.com/products/hw-sw-dev-tools.htm.

 4. S. Williams et al., “Scientific Computing Kernels on the
Cell Processor,” Int’l J. Parallel Programming, vol. 35, no.
3, 2007, pp. 263-298.

 5. G. Hendry et al., “Analysis of Photonic Networks for a
Chip Multiprocessor Using Scientific Applications,” Proc.
Int’l Symp. Networks-on-Chip (NOCs 09), 2009; www.
cs.columbia.edu/~luca/research/pnocs_NOCS09.pdf.

 6. Research Accelerator for Multiple Processors (RAMP);
http://ramp.eecs.berkeley.edu.

 7. D. Burke et al., “RAMP Blue: Implementation of a Many-
core 1008 Processor FPGA System,” Proc. Reconfigurable
Systems Summer Institute 2008 (RSSI 08), July 2008; www.
rssi2008.org/proceedings/papers/presentations/19_Burke.
pdf.

 8. “Into the Wide Blue Yonder with Blue Gene/L,” Science and
Technology Rev., Lawrence Livermore National Laboratory,
Apr. 2005; www.llnl.gov/str/April05/Seager.html.

 9. Nvidia Inc.; www.nvidia.com/object/cuda_home.html.
 10. AMD/ATI Inc., “ATI Stream Software Development Kit;”

http://developer.amd.com/gpu/ATIStreamSDK.

David Donofrio is a computer systems engineer at Law-
rence Berkeley National Laboratory and a member of the
Science Driven System Architecture Group at the National
Energy Research Supercomputing Center. His research
interests include computer architecture and multicore per-
formance optimization. Donofrio received a BS in computer
engineering from Virginia Tech. He is a member of the IEEE
Computer Society. Contact him at ddonofrio@lbl.gov.

Leonid Oliker is a staff computer scientist in the Future
Technologies Group at Lawrence Berkeley National Lab-
oratory. His research interests include supercomputing
evaluation, multicore autotuning, and power-efficient com-
puting. Oliker received a PhD in computer science from the
University of Colorado at Boulder. Contact him at loliker@
lbl.gov.

John Shalf is a staff computer scientist at Lawrence
Berkeley National Laboratory and the Group Leader of the
Science Driven System Architecture Group of the National
Energy Research Supercomputing Center and leads the
Green Flash Project. His research interests include com-
puter architecture, programming models, and frameworks
for large-scale scientific application development. Shalf
received a degree in electrical engineering from Virginia

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org

build
your
career
IN COMPUTING

www.computer.org/buildyourcareer

